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ABSTRACT

Binary sequences have had application in communication

systems for many years. Shift registers have been used in

their generation, because of the ease and economy of their

operation. For certain applications, nonlinear feedback

functions are used by shift registers of span n to generate

sequences of lengths up to 2n.

nThe sequences of maximum length 2 and their generation

are the subject of this thesis. In particular the ways

of generating these sequences using nonlinear feedback

shift registers and their correlation to linear feedback

shift registers are described. Complexity is the term

given to the length of the shortest linear feedback shift

nregister generating a maximum length 2 sequence.

Games and Chan (Ref. 1] have given considerable study

to the subject of complexity. Some of the problems they

left are discussed further in this paper. It will be shown

that the complexity of a de Bruijn sequence (S) is the same

as the complexity of its reverse (r S), complement (!), and

its reverse complement (r S). Sequences (S) for which r S .

are termed RC sequences. It is shown that RC sequences

exist for every odd n>3. In addition a lower bound will be

established for the number of RC sequences occurring for

each odd n.

4

.q -. . . . - %* .° ..2,,, o



TABLE OF CONTENTS

I. INTRODUCTION --------------------------------- 11

A. APPLICATION ------------------------------ 11

B. DEFINITION OF de BRUIJN SEQUENCES -------- 11

C. PSEUDO-RANDOMNESS ------------------------ 12

D. K-ARY SEQUENCES -------------------------- 13

E. DEFINITIONS ------------------------------ 13

II. SEQUENCE GENERATORS AND OPERATORS ------------ is

A. SHIFT REGISTERS -------------------------- 15

B. FEEDBACK SHIFT REGISTERS ----------------- 15

1. Linear Feedback Functions ------------ 16

2. Nonlinear Feedback Functions --------- 17

3. Comparison of Linear and Nonlinear
Feedback Functions ------------------- 17

C. SUCCESSOR AND PREDECESSOR STATES --------- 18

D. de BRUIJN DIAGRAMS ----------------------- 20

E. OPERATORS -------------------------------- 22

1. Identity Operator -------------------- 22

2. Reverse Operator --------------------- 22

3. Complement Operator ------------------ 22

4. Reverse Complement Operator ---------- 24

F. LINEAR RECURSION FORMULA ----------------- 26

1. Pascal Triangle (Mod 2) -------------- 26

2. Pascal Triangle Properties ----------- 27

..., ... . . .-.. . ... . .



OPLEXITY OF de BRUIJN SEQUENCES---------------23

*DEFINITION OF COMPLEXITY--------------------28___________

*COMPLEXITY ALGORITHM------------------------ 28 -

*COMPLEXITY DISTRIBUTION--------------------- 30

*EFFECTS OF OPERATORS ON COMPLEXITY----------30
* 0 .0 0

RUTH TABLES----------------------------------- 35

*FULL TRUTH TABLE--------------------------- 35

*HALF TRUTH TABLE------------------------ --- 36.Vt
* T1

*ZERO TRUTH TABLE--------------------------- 37 ;.-:.I

*ONES TRUTH TABLE--------------------------- 38

*EFFECTS OF CHANGING THE TRUTH TABLE---------42 ~ ~ ~ -

*SPECIAL NUMBERS---------------------------- 48 ..

1. Type RC Numbers------------------------ 49

2. Type R Numbers---------------- --------- 49_____

*GENERATOR ANALYSIS---------------------------s 50*.~ 1

SULTS---------------------------------------- 56

" cy (c, n) 0 MODULO 4 FOR n EVEN------------57

" RC SEQUENCES EXIST FOR ALL ODD n>3----------8

*LOWER BOUND ON NUMBER OF RC SEQUENCES - --- 60 ,.t;. --

1. Theorem-------------------------------- 60

2. Example for ni =-----------------------------60 .- <:~

ONJECTURES------------------------------------ 63.V-,' %

*RC SEQUENCE GENERATOR TECHNIQUE-------------63 uiS .0''yg-

*PROBLEMS----------------------------------- 65 ~ ..-

X A: ALGORITHM FOR GENERATING LEAST *-v
LEMENT FOR EVERY PURE CYCLE--------------------67 ~ ~ -. ~*

6



.o .* . o * -°,Z• ~ * *° , . . °W6W m .w . . -.~ - ~ -

LIST OF REFERENCES --------------------------------- 70

INITIAL DISTRIBUTION LIST -------------------------- 71

r 7



*. ~i .  
. . *, . ~ -.- -

LIST OF TABLES

1.1 3-TUPLE COMPOSITION OF de BRUIJN

SEQUENCES OF SPAN 3 --------------------------- 12

2.1 ADDITION (MODULO 2) --------------------------- 17

2.2 MULTIPLICATION (MODULO 2) --------------------- 17

2.3 NUMBER OF MAXIMUM LENGTH SEQUENCES ------------ 19

2.4 CONJUGATE AND COMPANION STATES (n=3) ---------- 20

2.5 de BRUIJN SEQUENCE OPERATORS ------------------ 25

2.6 PASCAL TRIANGLE (MOD 2) ----------------------- 26

3.1 LIMITS OF COMPLEXITY --------------------------- 29

3.2 COMPLEXITY DISTRIBUTION ----------------------- 32

4.1 FULL TRUTH TABLE OF (00011101) ---------------- 36

4.2 HALF TRUTH TABLE OF (00011101) ---------------- 37

4.3 ZERO TRUTH TABLE FOR n = 3 -------------------- 38

4.4 ONES TRUTH TABLE (n = 3) ---------------------- 40

4.5 PURE CYCLE COMPILATION ------------------------ 41

4.6 TRUTH TABLE (TABLE 4.4 MODIFIED) -------------- 43

4.7 TRUTH TABLE (TABLE 4.6 MODIFIED) -------------- 43

4.8 TRUTH TABLE ANALYSIS CHART -------------------- 51

4.9 GENERATOR ANALYSIS FOR de BRUIJN
SEQUENCES (r S S) --------------------------- 52

4.10 FULL TRUTH TABLE FOR S ------------------------ 53

4.11 FULL TRUTH TABLE FOR S (NON STANDARD) --------- 54

4.12 FULL TRUTH TABLE FOR ------------------------ ss

5.1 PURE CYCLES FOR N=7 & wt < 3 ------------------ 61

8



5.2 ADJACENCY MATRIX FOR n=7------------------------62

6.1 RC GENERATOR TECHNIQUE------------------------- 64

6.2 RC de BRUIJN SEQUENCE 0 (Mod 4)
GROUPING FOR n=5------------------------------- 66

A.1 a ALGORITHM FOR N =7-------------------------- 6

A.2 PURE CYCLE LEAST ELEMENTS (n=7)-----------------69

4.9



* LIST OF FIGURES

'42.1 n-Stage Shift Register-------------------------- 15

2.2 n-Stage Feedback Shift Register-----------------16

2.3 Adjacency Quadruple---------------------------- 20

2.4 Graph G 3-- -------------------- ------- ---------- 21

2.5 A Hamiltonian Path through G..------------------- 23

3.1 Flowchart for Complexity Algorithm--------------31

4.1 Pure Cycles (n=3)------------------------------ 39

4.2 Complementing Cycles (n=3)--------------------- 42

4.3 Cyclic Composition of Table 4.4-----------------44

-,4.4 Cyclic Composition of Table 4.7----------------- 45

4.5 Two Cycle Graph-------------------------------- 46

4.6 Cycle Splitting-------------------------------- 47

4.7 Cycle Joining---------------------------------- 48

10



I. INTRODUCTION

A. APPLICATION

- de Bruijn sequences have been the subject of recurring

interest since their discovery over a century ago. Recent

developments in radar ranging [Ref. 2: Ch. 13], error correct-

ing codes, secure or limited access code generators [Ref. 3:

pp. 12-14], and mathematical modeling have made application

of de Bruijn sequences because of their properties. The

binary shift registers readily model digital computers with

electronic states where "'1" indicates the on state and "0"

indicates the off state.

B. DEFINITION OF de BRUIJN SEQUENCES

For a positive integer n, a de Bruijn sequence of span

n is a complete binary cycle of length 2n which is a sequence

S {sI , s , .-., Sn taken in circular order (sI follows
2n

s ) such that all possible n-tuples occur exactly once.
2

[Ref. 4: p. 120]. Complete binary cycles are often called

de Bruijn sequences after the Dutch mathematician, N. de

Bruijn, who in 1946 proved the existence of complete binary

2n an ,n n
cycles having length 2 and that they numbered 2'

de Bruijn was preceeded by Flye Saint-Marie a half century

earlier in an obscure publication [Ref. 5]. As an example3-1_

for n = 3, Table 1.1 shows both (22 3 de Bruijn sequences

Iii1,11

W IT
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of length eight (2)). Both of these sequences are examined

to confirm that each of the eight 3-tuples occur exactly

once. Notice that 2 elements of the sequence are repeated

as signified by the bar (UO), which was necessary on each

sequence to complete the last two 3-tuples.

TABLE 1.1

3-TUPLE COMPOSITION OF de BRUIJN SEQUENCES OF SPAN 3

"-- : 000111011)-0 000101111)-0

000 000
001 001
011 010
111 101

. 110 011
-.-,"101 111

010 110
100 100

mn
There are 2n different possible starting points for

each de Bruijn sequence; however, each cyclic permutation

is considered equivalent. It is often a matter of conveni-

ence to start each sequence in a canonical way with the all

zero or all one n-tuple. This reduces confusion when working

with a number of different de Bruijn sequences.

C. PSEUDO-RANDOMNESS

Since each binary n-tuple occurs exactly once on the

F..T cycle, the sequence models a uniform distribution with the

probability of given n-tuple occurring to be exactly /n

The sequence is not entirely random, however, since each

12
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n-tuple (a1 a2 -. an) has but two possible successors

(0 a1 a2 -.- an-i or 1 a1 a., .. anl), de Bruijn sequences

satisfy the randomness properties of equidistribution of

O's and l's and run lengths [Ref. 3: p. 10] which would be

expected from the tossing of a fair coin. Thus, de Bruijn

sequences have a pseudorandom property.

D. K-ARY SEQUENCES

In general it is possible to work with k possible states

for each position of an n-tuple. Flye Saint-Marie in 1894,

showed the existence and determined the number of complete
kn-lk n-l

cycles for n-tuples of k characters to be [(k-l)! -n

[Ref. 5]. This report is restricted to the binary case

(k = 2) due to its principal application in electronic com-

munications and computers.

E. DEFINITIONS

For S = {sI s2 ... sk } where si E {0,1} for 1<i<k the

following are defined:

1. Let W(S) denote the weight of S.

k
W(S) = E s.

i=l1

2. Let P(S) denote the parity of S.

k
P(S) = E s i  (mod 2)

i=1

i." 13
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3. Let l(S) denote the length of S.

i(s) - k where k is the number of positions in S.

S.1

'J.:
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II. SEQUENCE GENERATORS AND OPERATORS

A. SHIFT REGISTERS

In practice shift registers are used to generate de Bruijn

sequences. An n-stage shift register has n memory registers

(x,, x2, ... I xn) which shift their contents (0 or 1) to the

next register upon command. For example, in Fig. 2.1, the

contents of x1 will transfer toxx oxetc., at the

appropriate time with X n serving as the output. However,

the contents of an n-stage shift register would empty in

n shifts if no input was provided to x1

--

*Fig. 2.1 n-Stage Shift Register.

B. FEEDBACK SHIFT REGISTERS

Feedback networks are added to provide an input to the

1st stage of the shift register. Note that in practice

the output can be taken from any stage of the shift register.

In fact, the contents of any stage is the same as the con-

tents of any stage is the same as the contents of the nt

41%nis

.6t
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stage, merely shifted by a certain amount. In Fig. 2.2 the

feedback function f is added to the n-stage shift register

to generate non-trivial sequences. The coefficients

- aO , a1, see, a are 0 or 1 with a = a = 1.n 0 n-'.-
4.

i.X 2 X2 n F S-'f-oX ,egisterOUT

Feedback
. Loop

i .. f(x 1 - ... Xn)

. Fig. 2.2 n-Stage Feedback Shift Register.

-" 1. Linear Feedback Functions

A feedback function f is classified as linear if

., the function f (x1 , x2 , *-.,Xn) is restricted to be of the
2% n

n
4form f - E ai xi where the addition is modulo 2 addition.

The addition (mod 2) table is given in Table 2.1 below.

Note that subtraction is equivalent to addition when opera-

ting modulo 2.

16
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TABLE 2.1

ADDITION (MODULO 2)

0 1

0 0 1

1 1 0

2. Nonlinear Feedback Functions

If the feedback function f(x1 , ---, xn) utilizes

multiplication (mod 2) and addition (mod 2) then the feed-

back function is nonlinear. (We also say that the linear

feedback functions are vacuously nonlinear feedback functions.)

Modulo 2 multiplication is identical to multiplication in

the integers with the restriction of the alphabet used

being the set [0, 11 as described in Table 2.2.

TABLE 2.2

MULTIPLICATION (MODULO 2)

*0 1

0 0 0

1 0 1

3. Comparison of Linear and Nonlinear Feedback Functions

Considerable research has been devoted to the study

of linear feedback functions because of their ease of analy-

sis. Nonlinear feedback functions are much more complicated.

17
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However, the class of sequences that can be generated by

>-1 nonlinear functions is much greater than for linear functions.

The number of binary maximum length (2nl) linear

sequences that can be generated by a n-stage linear feed-

back shift register (LFSR) is approximately --. [Ref. 7].

The reason that the maximum length linear sequences only

have length 2n - is that the zero state is a fixed point

under the linear function. This poses no problem since the

nn
': maximal length linear sequences are readily made into

:1-*"

de Bruijn sequences having length 2n simply by adding a

zero to the (n-l)-tuple of zeros. The feedback function

involved then becomes a nonlinear function.

By comparison the number of binary nonlinear full

length sequences (2 n) that can be generated by a nonlinear,n-l_
- , feedback shift register (NFSR) is exactly 2  n. Below,

Table 2.3 compares these numbers for 3<n<8. The number of

maximum length sequences will be of interest later in

Section III, where the concept of complexity in generating

these sequences will be developed. Various algorithms are

listed in a survey by Fredricksen [Ref. 5] for generating

de Bruijn sequences.

C. SUCCESSOR AND PREDECESSOR STATES

M- The contents of an n-stage shift register at a specific

time is usually referred to as its "state". As mentioned

in Section I when discussing the pseudorandomness of de BruijnLOP

18
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TABLE 2.3

NUMBER OF MAXIMUM LENGTH SEQUENCES

n Linear Nonlinear

3 2

S4 4 16

5 6 2048

6 6 67,108,864
17

7 18 1.4 x 10
8 30 2.7 x 1036

sequences each state has two possible successor (conjugate)

states depending on whether the feedback function generates

a "0" or "'" as the input to register x1 . Likewise each

state has two predecessor (companion) states depending on

whether the previous output was a "0" or "1". The adjacency

quadruple in Fig. 2.3 centers around then (n-l)-tuple x2...xn

That is, each input state has two possible successors depend-

ing on whether the feedback is 0 or 1, and each output state

has two possible predecessors depending on whether the pre-

vious output from the nth stage was 0 or 1.

In Table 2.4 we show an example for n = 3 of the possible

successors and predecessors for each state.

19
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Fig. 2.3 Adjacency Quadruple.

TABLE 2.4

CONJUGATE AND COMPANION STATES (n=3)

*Predecessors State Successors

000-001 000 000-100

010-011 001 000-100

A100-101 010 001-101
110-111 011 001-101

000-001 100 010-110

010-011 10]1 010-110

100-101 110 011-111

110-111 ill 011-111

Output Input

D. de BRUIJN DIAGRAM--S

The de Bruijn diagram compactly contains all the above

n
information. The diagram contains 2~ vertices corresponding

ni

0 to the 2 states and two directed edges from each state to

, ;R.

20



the possible pair of successor vertices. As a result two

arrows exit every vertex leading to conjugate states, and

two arrows enter every vertex arriving from companion states.

For an example consider the de Bruijn diagram Gn for n = 3

in Fig. 2.4. An Eulerian path through Gn is defined as a

000

01

D101

.121

, -

"N

Fig. 2.4 Graph G3.

21
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path which visits each edge exactly once. A path which

visits every vertex of Gn is called a Hamiltonian path. A

Hamiltonian path in G is a de Bruijn sequence of span n.

If the edges of Gn are labeled with an n + 1-tuple defined

by the labels on the predecessor and successor states, then

the Eulerian paths in Gn correspond to Hamiltonian paths--

and de Bruijn sequences in the graph Gn+l* The Hamiltcnian

path in Fig. 2.5 is a subgraph of G in Fig. 2.4 with exactly

one edge emanating from each vertex.

E. OPERATORS
For S = s I s 2 *- an-1 s 'where si  1 '0,1} for l<i<n the

following operators are defined.

1. Identity Operator

The identity operator (e) operating on S denoted

eS= 1 s2 . a1 n

2. Reverse Operator

The reverse operator (r.) operating on S is denoted

r S, where r S = sn sn-l --- s2 sI . The reverse operator

preserves the weight, parity and length of S. Note also

that (r) 2 e.

3. Complement Operator

The complement (dual) operator on S is denoted d S

or , where TT 1  .. T n such that i =S @ 11 2 n-l n 1 1

(mod 2) for l<i<n.

22
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Lemma 1: If W (S) k for S= s s. s then

W () = n-k.

Proof: W (S) = k implies k non:ero elements e S

and n-k zero elements e S.

Complementing n-k zero elements produces

n-k nonzero elements e

:. W(') =n-k

Q.E.D.

Lemma 2: If P (S) = a where a c {0,1} and S = s s2 .- n

then P ( ) is a iff n is even.
n

Proof: P (S) = Z si (mod 2) = a
i=l

n n
P (g) = Z i (mod 2) = Z si  1 a n

"""i=l 1~
I=1

-.. therefore P (S) = P (n-a)

Q.E.D.

-*" Also note (d) 2 = e, and that the reverse and comple-

ment operators are commutative, i.e. rd = dr.

4. Reverse Complement Operator

The reverse complement operator on S is denoted

r n Sn- 2 1 Weight and parity are effected

by the reverse complement operator exactly as with the

complementation operator.

These operators apply to sequences as well, since

sequences are composed of n-tuples. Table 2.6 shows the

effect of operators on de Bruijn sequences of span 3 and 4

24
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where r S, S, and r S are all de Bruijn sequences, as they

always are if S is a de Bruijn sequence.

TABLE 2.5

de BRUIJN SEQUENCE OPERATORS

n = 3 (Canonical Form)

S = 00011101 = 00011101

rS = 10111000 = 00010111

= 11100010 = 00010111

= 01000111 = 00011101

n : 4 (Canonical Form)

S = 0000111101001011 = 0000111101001011

rS = 1101001011110000 = 0000110100101111

= 1111000010110100 = 0000101101001111
r : 0010110100001111 = 0000111100101101

If as in the case for n = 3 in Table 2.5 a sequence

S is equivalent to its reverse complement, then S is termed

a RC sequence. This applies to both de Bruijn and non-

K de Bruijn sequences. The following theorem appears in a

paper by Etzion and Lempel [Ref. 6].

Theorem 1: A sequence S is a RC sequence if Z (S) is

even and S = fX, rY} for some X where X is a binary string.

25
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F. LINEAR RECURSION FORM1ULA

de Bruijn sequences generated by a nonlinear function

can also be generated by a linear function f (x1 .. x) = x

having the linear recursion formula

n
Z a. x. = 0

j=0 J

Here each a. determines a tap to the j th stage of theJ

register. The linear generator polynomial must be

(x + i) for some positive integer k, due to the periods of

de Bruijn sequences (2n) and results from theorems given

by Golomb [Ref. 7: pp. 27-43].

1. Pascal Triangle (Mod 2)

The values for each a. are summari:ed in the Pascal

triangle (mod 2) Table 2.6 for various values of n. They

are the coefficients generated by the binomial expansion of
k

(x + ) od 2.

TABLE 2.6

PASCAL TRIANGLE (MOD 2)

k-0

i 1 1

2 1 0 1

3 1 1 1 1

4 1 0 0 0 1

S1 1 0 0 1 1 (x+l)

a a1  a2  a a4  aS

26
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2. Pascal Triangle Properties

(a) The a. sequence is palindromic, that is

ao =a =1 I a an ia 2 = anZ etc.' "n ' n -1 n-2 '

(b) The number of nonzero coefficients is even,
n

that is Z a. = 0 (mod 2).
j =0 2

5"'2

E~l
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III. COMPLEXITY OF de BRUIJN SEQUENCES

A. DEFINITION OF COMPLEXITY

The term complexity indicates a general measure of the

predictability of a sequence. Various definitions of con-

plexity are in use, but this paper will use the one given

by Chan and Games [Ref. 1]. Their definition of complexity

is the length of the shortest LFSR required to generate a

sequence. They apply their results primarily to de Bruijn

sequences. This definition is also the one used by Herlestom

(Ref. 8] to look at two different shift register cycle gen-

erators. For a de Bruijn sequence S, let C(S) denote the

complexity of S.

Previous results by Chan and Games [Ref. 1] establish

n-i n-1lower and upper bounds of 2 +n and 2 respectively for

the complexity of a de Bruijn sequence. Thus, the length

of a LFSR is almost as long the sequence as opposed to a

n-stage NFSR which generates the sequence. Table 3.1 serves

as a ready reference for the upper and lower limits of

complexity for 3<n<8. The upper bound is known to be attained

for all n and the lower bound for all n<6.

B. COMPLEXITY ALGORITHM

A fast method for determining the complexity of a de

Bruijn sequence was developed by Games and Chan [Ref. 9]
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TABLE 3.1

LIMITS OF COMPLEXITY
4.

Span Lower Bound Upper Bound

(n) (2n l +n) = (2 -l )

, 3 7 7

4 12 15

5 21 31

6 38 63

7 71 127

8 136 255

and is represented by the flow chart in Fig. 3.1. Let S be

n
a de Bruijn sequence then Z(S) 2. Further let S = A:B = D

where A = {aI a2 ... a nl and B = {bI b2 ... b n-l} then
2 2

D = {a1 a2 --- a n-1 b1 b2 -.- b 2 nl. To serve as a guide

an example for n = 5 is now presented. Let the de Bruijn

sequence S = {1111100000100011110000101001110} having length

Z = 32.

A 1111100000100011 2. 16

B 0101100101001110 C - 0

A+B 1010000101101101 C a 16

A 10100001 2 = 8

B 01101101 C - 16

A+B 11001100 C a 24

i
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A 1100 Z = 4 Since AB 0

B 1100 C = 24

A+B 0000 C = 24 C is unchanged

A 11 Z 2

B 00 C 24

A+B 11 C =26

A 1 1 1 Add 1 since t I

B 1 C = 26 A = 1

A+B 0 C = 26 + 1 = 27

C. COMPLEXITY DISTRIBUTION

The nature of the distribution of complexity of de Bruijn

sequences is the primary interest of this paper. Let

a (c,n) denote the number of de Bruijn sequences having com-

plexity c and span n. The complexity distribution of de

Bruijn sequences of span n for 3<n<6 are listed in Table

3.2. Unfortunately the large number of de Bruijn sequences

for n>7 (257) does not allow an exhaustive examination of

their complexities.

Examination of this data led Chan and Games to conjecture

that for n>3 a (c,n) is congruent to 0 modulo 4.

D. EFFECTS OF OPERATORS ON COMPLEXITY

Chan et al. [Ref. 1] proved that a(c,n) for n>3 was con-

gruent to 0 modulo 2. By showing that for each de Bruijn

30
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D Sn

C 0

D =A:B

Z 12 NoI e

B =A$

No B 0 oI e

Fig. 3.1 Flowchart for Complexity Algorithm.
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J.. TABLE 3.2

COMPLEXITY DISTRIBUTION

C c(c,4) c ct(c,5) c ct(c,5)

12 4 21 91 27 64

13 0 22 0 28 180

14 4 23 12 29 224

1s 8 24 20 30 448

25 32 31 1024

26 36

n6

c a.(c,6) c a(c,6)

38 448 51 8704
39 0 52 18096

-~40 32 53 34224

41 96 54 67700

42 160 55 126592

43 80 56 259320

ft44 432 57 519752

45 288 58 1041252
46 896 59 2090716

47 1168 60 4162352"

48 2772 61 8342176

49 2352 62 16692832

5o 5224 63 33731200
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sequence having complexity c, there exists another different

de Bruijn sequence 5 also having complexity c. Consequently

they showed that the complement operator does not change the

complexity of a de Bruijn sequence. Using a different

approach, the next theorem will show that the complexity of

a de Bruijn sequence is also the complexity of the de Bruijn

sequences defined by the reverse operator and by the reverse

complement operator as well.

Lemma 3. For S = s2 **. s 1nl, a de Bruijn sequence,
C()=cifc 2n-

C(S) = c iff Z a s. = 0 for every si where each ai comes
-.9, i=O 1 1

from the c row of the Pascal triangle (mod 2) and c is the

smallest integer such that the above recursion holds.

Proof. S is de Bruijn with C(S) = c iff s. = f(si+l.

S +c) for every si c S, which is equivalent to si =

Z a. si+ j from results by Golomb [Ref. 5: pp. 27-43]

mentioned earlier. In turn si = E a. s . = 0 from proper-
j=O 0

ties of the Pascal triangle given in Section II. Q.E.D.

This lemma is used in the following theorem to show that

complexity is preserved by various operators on de Bruijn

sequences.

Theorem 2. If S is a de Bruijn sequence having complexity

C, then C(S) = C('S) = C(rS) = C(rg) = c.

Proof. Part I (reverse operator)

Let s. s .-. s. be an arbitrary (c+l) long segment
* i+l ~

of S which satisfies

33
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C

j=0 j 1+3

by Lemma 3. Since the a. sequence is palindromic as shown

earlier, 5is ... s ils~ a (c~l) long segment of rS satisfies

equation (1). Thus C (rS) = c.

Part II (complement operator) substituting ~**s+

the c+1 long segment of !S, into equation (1) , the results are

1oT , i+l + +al i~c-l + c sic

a0 (s + 1) + 1 (s + 1) + + ac~ (s. 1) +ac
0 1 ~ - ~ -

c c
(si+C +1) Z a. s. + Z a. (mod 2. Since there are

j=0 13 j=0 i
c

an even number of nonzero a is, Z a. j 0 and equation (1)

is satisfied. Therefore, by Lemma 3 C(!;) =c.

Part III (reverse complement operator) , by Parts I and

II, it follows immediately that C (rS) =c. Thus C (S)

C (rS) -C ()=C (rS)

Q.E.D.
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IV. TRUTH TABLES

Linear and nonlinear feedback functions were used in

conjunction with n-stage shift registers to generate de Bruijn

sequences in Section II. The input x0 was generated as some

function f of the current state x1 x2 "* Xn, that is

(1) X 0 = f (x1 x 2 ... Xn)

or equivalently writing f as in (2) when specializing for

cycles only functions.

(2) x0 = xn + g (x1 ... Xnil).

Extensive use is made of equation (2) since results for

cycles only are desired.

A. FULL TRUTH TABLE

The full truth table is a useful way of listing the

functional value x0 from equation (1) for each possible

state of the shift register. The functional values in Table

4.1 is an example of a full truth table for a de Bruijn

sequence (00011101).

Examining the full truth table it becomes apparent that

the information in the lower half (below the dashed line)

is redundant, since the values of f (x1 x2 x3) for x3 = 1

in the lower half are merely the complements of the values

of f (x1 x2 x3) for x3 = 0 in the upper half for the identical

values of x1 x2. This suggests that the upper half (or the
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" -~TABLE 4.1

FULL TRUTH TABLE OF (00011101)
/'p

Current State Functional Value
(x3 x2 x1 ) x0  f (x1 x2 x3)

0 00 1

0 0 1

0 1 0 0

01 1 -_ 1 -_

1 00 0

1 0 1 0

1 0 1
1 1 0

1 11 0

lower half) of the truth table can display all the informa-

tion for a function generating only cycles.

B. HALF TRUTH TABLE

Focusing on equation (2), since xn is always 1 in the

lower half this can be viewed as complementing the functional

values for g (x ... Xnl) in the upper half. In this manner

the half truth table in Table 4.2 is constructed for the same

de Bruijn sequence (00011101) to aid comparison with Table

4.1. From this point on the term truth table will always

mean the upper half truth table with xn =0, unless noted

otherwise.
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TABLE 4.2

HALF TRUTH TABLE OF (00011101)

x2 x g (x1 x2 )

0 0 1

0 1 1

1 0 0

11 1

The string of functional values in the truth table is

defined to be the generator G = {go g, - g -l I where

the subscripts of g are the decimal equivalent of

Xn 1 *,x . Both the weight and parity of generator G

will be of interest as the investigation of this paper con-

tinues. Whenever the parity or weight of the truth table

is mentioned in this paper, it is referring to the generator

of that truth table.

C. ZERO TRUTH TABLE

The zero truth table is defined as the truth table in

which all functional values are zero. The zero truth table

for n = 3 contained in Table 4.3 is basically the output of

a circulating register which generates pure cycles.

Pure cycles are defined as cyclic permutations of the

original state. The zero truth table in Table 4.3 generates

the four pure cycles shown in Fig. 4.1. The number of pure
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TABLE 4.3

ZERO TRUTH TABLE FOR n =3

X2 x1 ( 1  2)

0 0 0

0 1 0

1 0 0

1 1 0

cycles Zn has been shown [Ref. 7: p. 120] to be
n 

dn din

Eulers totient function (d) is the number of fractions

of the form a/d where 1<a<d and ai/d is in lowest terms. The

summation is over all positive integers d which divide n,

denoted (din). It is further shown [Ref. 5] that 7 n-1 is

the minimum possible weight truth table that can generate a

de Bruijn sequence.

In the next section, the proof of theorem 6 gives an

example of how pure cycles can be joined in a way to create

a de Bruijn sequence that has a minimum weight truth table.

Table 4.5 gives a listing of Zn and Zn -l1 for l<n<7.
n* n

D. ONES TRUTH TABLE

.-
"-Th ce onhas truthonab ef sgn p. !f0nctoa vae of1t

Zn n-1)i

- ' ofthe outo a compeentiadn shif reistoer. Termsputhes

sumaio i oeral psiiv iteer dwhchdiid8n

deoe dn.I*sfrhr hw Rf ]ta 21i
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T- 70 . -.

* always the complement of the output, i.e. f (x~ *" xn

1 + X . The ones truth table for n = 3 is shown in Table

4.4. The complementing cycles from Table 4.4 are depicted

in Fig. 4.2.

TABLE 4.4

ONES TRUTH TABLE (n = 3)

2 X1  g (xl x 2 )

0 0 1

0 1 1

1 0 1

The number of complementing cycles Zn [Ref. 7] is

Zn Zn - 1 E ¢ (2d) 2
n. n -n- 2djn

Since summation for Zn is over all 2d (even) numbers which

divide n, for n odd Zn = Zn .

Accordingly Fredricksen [Ref. 5] shows truth tables of max

weight tha- can generate a de Bruijn sequence is

2 n ' l -Z + 1.

The values of an - Zn + I are given in Table 4.5

for l<n<7. Also included are the number of de Bruijn se-

quences having truth tables of maximum or minimum weight

from a listing by Fredricksen [Ref. 5].
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TABLE 4.5

.5.. PURE CYCLE COMPILATION

# de Bruijn # de Bruijn
Sequences Sequences
with Minn- with Max

Zn I~- Wt Truth Table Z flZ tTrhTae

1 2 111 1

2 3 2

3 4 32232

4 6 5 12 2 73

5 8 7 2 6. 32 4 13 2 6

6 14 13 2 14. 34. 52 6 27

7 20 19 .728. 3S53. 13 10 55 2 26. 3

.2.



.

000

010

O11 110

Fig. 4.2 Complementing Cycles (n=3)

E. EFFECTS OF CHANGING THE TRUTH TABLE

If the ones truth table in Table 4.4 is changed so that

g (0,1) = 0 vice 1, the truth table of Table 4.6 is produced.

42
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TABLE 4.6

TRUTH TABLE (TABLE 4.4 MODIFIED)

x x g (xI x2 )
2 1 1__ 2)

0 0 1

0 1 0

1 01

This change in the truth table effects the cycles of Fig.

4.2 by joining them as depicted in Fig. 4.3. Indeed the

change produces a Hamiltonian path for the de Bruijn sequence

(00010111).

Suppose the truth table of Table 4.6 is now changed so

that g (00) =0 vice 1. This produces the truth table in

Table 4.7, and its cyclic composition in Fig. 4.4.

TABLE 4.7

TRUTH TABLE (TABLE 4.6 MODIFIED)

x2 xI  g (x I x2 )

0 0 0

0 1 0

1 0 1

1 1 1
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000

1110

.k

Fig. 4.4 Cyclic Composition of Table 4.7.
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This change in the truth table causes the cycle to split

into two cycles. Suppose (xn --. xI) is on element on upper

*JK of two cycles as shown in Fig. 4.5 and that its successor is

J .q

.1

Fig. 4.5 Two Cycle Graph.

Xx 1 as f (x xn) 1 . If the truth table is

now changed so that f (xI -.- Xn) = 0, then Xn-l --- x I 0

is the new successor for xn . x Retaining the cycles

only condition f (x1  . xn 5E)must now be 1. So the

successor of xn Xn- ""X is now Xn_. xI 1 One of

two things can happen how depending on whether Xn_ 1 - x 0

is on the upper or lower cycle.
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First if (xn I -.. xl0) is on the upper cycle, then that

cycle is split as shown in Fig. 4.6 forming three cycles.

x n*** xi nl

Fig. 4.6 Cycle Splitting.

Otherwise if (xn- *** xl 0) is on the lower cycle, then

n-

those two cycles are joined as shown in Fig. 4.7.

Clearly the parity of the cycles changes for each change

in the truth table. The following theorem froi., Golomb

(Ref. 7: p. 121.J shows that the parity of the number of cycles

and the parity of the truth table generator are equal.

Theorem 3. For n>'., the parity of the truth table is

equal to the parity of the number of cycles of the truth

'S table.
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Since a de Bruijn sequence is one cycle by definition,

the following corollary of theorem 3 is given.

Corollary. If a sequence is de Bruijn, then the parity

of the TT of that sequence is odd.

-

Fig. 4.7 Cycle Joining.

F. SPECIAL NUMBERS

Analyzing the effects of de Bruijn sequence operators

on their truth tables, certain binary numbers are found to

have special properties which can be exploited in later

analysis.

48

b : ,. • . " ° -o - . . o ° S o o . . . - - . ,, -- - , ,,, *X- ' II .. , .L ,., ,.,'.--U ' ,I - . .*. " " ... - :. .S"..-.. ..... '. " -5 -



, 1. Type RC Numbers

If X = x l "
*

" Xn is a binary number, such that

x -. = x1  xn then X is called a RC number.n n n
T

Lemma 4. For n even there are exactly 2 type RC numbers.

Proof. For n even, if X is an RC number, then

X= n " by definition. Therefore,

X2 n-1' etc. Thus x ..x can be written as

X1X2 ''-Xn n.-.x2 . Since I positions can be filled in

either of two ways, the total number of RC numbers for n
n

even is 2.

Q.E.D.

There are no type RC numbers for n odd, since this

would require that X n+l = which is impossible.

2. Type R Numbe r

If X = x...x is a binary number such that

nnxlO.--x n  x - Xl, then it is called a type R number.

Lemma 5. For n even there arE+Txactly 21 type R numbers,

-2-
and for n odd there are exactly 2 type R numbers.

Proof. The proof for n even parallels that of Lemma 4

and will not be repeated. For n odd, since Xn+l = Xn+l

there are n+l positions to be filled in either Ritwo----
ways. Therefore, for n odd there are exactly 2 type R

numbers.

Q.E.D.
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A useful way of organizing special numbers and other

truth table values to assist in evaluating effects on the

generators for various operators is shown in Table 4.8 for

n 5 5 and n = 6. The numbers are the decimal equivalent of

the binary (n-l)-tuple, Xn-l. .Xl, from the feedback function

x 0 =xn + g (x1 " n)

which also corresponds to the truth table state.

For example for n = 5, if f (2) = 1 for some sequence

S then: f (11) = 1 for r g', f (4) = 1 for r S, and f (13) = 1

for S. In general, for some operator a and some number a,

if f (a) = 1 for some sequence S, then f (na) = 1 for 3 S.

Special numbers have properties in addition to this. If a

is a type RC number and f (a) = 1 for S, then f (a)= f (r Y) =

1 for r S. Similarly if y is a type R number and f (y) = I

for S, then f (y) = f (ry) = 1 for r S. Thus, if we want to

shown S is a sequence such that S = r S, then if f (a) = 1

in S, then f (r 1) = 1 in S also.

G. GENERATOR ANALYSIS

Analysis of the generators for the de Bruijn sequences

S, r S, , & r ; in Table 4.9 appears to indicate the gener-

ator G of sequence S; denoted G (!) is the reverse of the

,F' 1 generator G (S). Notice also that G (r S) = r [G (r )]

for S. Although Table 4.9 is an example of a single sequence

S, it is not an isolated incident; in general the result

G (S) = r [G (3)] holds and is proven in the following

theorem.
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TABLE 4.8

TRUTH TABLE ANALYSIS CHART

S rS

S rrS rS

rS 5

r7 rS S

. 0 15 0 15 Truth table states (n=5)

1 14 8 7 Type R numbers

2 13 4 11 (0,6,9,15)

"0. 3 12 12 3
,-:. 10 10Type RC numbers

.<: .5 10 10 5

(3,5 ,10,12)
6 9 6 9

0 31 0 31 Truth table states (n=6)

1 30 16 15 Type R numbers

2 29 8 23 (0,4,10,31)

. 3 28 24 7 Type RC numbers

4 27 4 27 (None)

5 26 20 11

6 25 12 19

9 22 18 13

10 21 10 21

14 17 14 17

&Z 4

"-'-"51
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TABLE 4.9

GENERATOR ANALYSIS FOR de BRUIJN SEQUENCES

(r S # S)

S 11111001000111011010011000001010

S 11111010100000110111000100101100

rS 11111010100000110010110111000100

rS 11111001101001000111011000001010

x .. , I  G (S) G (S) G rS) G (r -),_.- -,n -l ,

0 1 1 1 1

1 0 1 1 0

2 1 0 0 1

E--3 [ 1 0 0 1

Type RC 4 0 1 1 0

l 0 1 1 0

1D 0 i 0 1

Type R 7 0 1 1 0

thrSh~ 1 0 0 1

) & 115 1 0 1 0

JjJ1 0 0 1
K-11 1 0 0 1

0 1 1 0

13 0 1 1 0

14 1 0 0 1

S2
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Theorem 4: If S is a de Bruijn sequence with generator

G (S), then T is a de Bruijn sequence with generator

r EG CS)].

Proof: Let G (S) = l CT a } then the full

truth table for S is given in Table 4.10.

TABLE 4.10

FULL TRUTH TABLE FOR S

Xn Xn-1 Xn2- 1 f (x1, ',xn

0% 0 0
0 0 01

0 0 0 .. 9

o 1 1 1' 1 -

1 0 0 0. 0 r

1 0 0 ... 1 9

If x, xnl * x, f (x1 * xn is a (n+1) long string

in S, then -xn' xn*'-" .. ' f (-Y1 x, ** xn) is a (n+1)

long string in ~

__ Therefore we can transform each line of the full truth

table for S by taking its complement to get Table 4.11.

53

VA



TABLE 4.11

FULL TRUTH TABLE FOR S (NON STANDARD)

xn xn 1 n- x x1  f (x1 , x2 , . , xn )

F .1 1 1 . - 1 g

1 1 1 n 0 g2

i~ ~ or ..

1 0 0 n -

0 1 1 . 1 g

0 1 1 0 2

0 0 0 ..- 0 g

Rearranging the rows from top to bottom, the TT for S is

placed in standard form as depicted in the Table 4.12.

Further examination of the generators in Table 4.9 shows

the structure of G (S) to be remarkably similar to the

structure of G (r S), with the exception that the functional

values of type R numbers (6 & 9) are transposed. If, however,

these values should be the same then clearly G ( ) G (r S)

or S = r . Indeed, this occurs twice for n = 3 and 64 times

for n = 5, and will be shown to happen for all odd n>3.

This cannot happen for n even, because there are no type

RC numbers in the truth table.
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TABLE 4.12

FULL TRUTH TABLE FOR

x n Xn-i xn-2 'l (x 1 , x 2 , 2 xn

o 0 0 0 n-
2

o 1 1 *00 1

1 0 0 *' 0

* 99

Clearly G ()is r [G (S)]

Q.E.D.

0; 4
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V. RESULTS

0Examining Table 5.2 it can be quickly determined that the

number of de Bruijn sequences of given complexity for 3<n<6

is 0 (mod 4). Games and Chan [Ref. 1] made this conjecture,

but were able to show only that the distribution a (c, n)

was 0 mod 2. Their result followed by showing that for a

given de Bruijn sequence S of complexity c, there existed

a unique de Bruijn sequence S* also having complexity c.

In Section III it was shown that reverse and reverse dual

operators preserve the complexity of de Bruijn sequences as

well.

If each of these new operators produced unique de Bruijn

sequences, then it would be easy to show that the numbers

a (c, n) = 0 (mod 4) since for every de Bruijn sequence S

there would also exist 3, r S and r S all de Bruijn and

unique having complexity c. As mentioned in Section IV, the

sequences r S and r S are not always distinct from the

sequences S & S respectively; however, for n even the next

theorem shows that all four of these sequences are distinct.

In addition it will be shown that RC sequences occur for

all n odd, and a lower bound for the number of RC sequences

will be established for all n and investigated for n = 7.
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A. a (c, n) 0 MODULO 4 FOR n EVEN

Etzion and Lempel [Ref. 6] give a proof that a (c, n)

is congruent to 0 mod 4 for c n even. In the proof for n

even given here a different approach is taken.

Theorem 5. For even n>3, the numbers a (c, n) = 0 (mod 4)

for a de Bruijn sequence S of span n and complexity c.

Proof. From theorem 1, it is known that for a de Bruijn

sequence S of complexity c, that '5, r S & r S* also have

complexity c. Games and Chan showed the uniqueness of S"

so all that remains is to show that r S is distinct from

S, or equivalently that r ST is distinct from S for n even.

Suppose on the contrary that S = r ST. Then consider

an n-tuple Oan- a I in the truth table such that

f (a, ... an_1 0) 1l. Then Oan. 1 ... a, 1 is a n+l long

string in S, and o al "" nl 1 is a n+l long string in r ST.

If S = r S

then 0 1"' an- 1
I is a n+l long string in S,

which implies

that 1 5l a n-I 0 is a n+l long string in S, and

therefore f (a an-i 0) = 1. This must hold for every

<K;se::n- 0 such that f (x 1 ... x n10) =1. Pairing

* these vectors, a1 .-. an.l and i -n -. , two at a time

results in an even number of l's in the truth table. So

there must be a vector which pairs with itself as the parity

of ones is odd. But then x ..- x1 - 1 *'* is a
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contradiction since Xn+l x for n even. Therefore forT~ -n2-

n even S # r and r S so r S and r are distinct

and a (c, n) E 0 mod 4.

Q.E.D.

B. RC SEQUENCES EXIST FOR ALL ODD n>3

The results a(c,n) 0 (mod 4) for all n are not obtained

as hoped for. For n = 3 and n = 5 RC sequences are known

to exist, but it is not known if this is true for all odd

n>3 or just some. The following theorem shows that RC

sequences exist for all odd n>3. Recall that RC sequences

are those sequences S for which S= r S or equivalent by

r S since r (S) = r (rS) yields = r S.

Lemma 6. The sequence formed by joining all pure.

', cycles of n-tuples is de Bruijn.

Proof. The least elements of each pure cycle for a

given n are easily composed and arranged in order by weight

according to the algorithm in Appendix A. Since the pure

cycles contain all n-tuples exactly once, all that remains

is to show how each pure cycle can be interconnected, thus

forming a de Bruijn sequence. For each cycle of wt a>l

there exists a least element "2X+l" (necessarily odd, if

it were even (2X) then "X" is on the same cycle and smaller)

whose predecessor "X" has wt (a-l). Since the pure cycles

are ordered by weight, it is clear that the least element

of each pure cycle of wt a>l can be joined to a cycle of
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wt (a-i) by changing the truth table for its predecessor,

i.e. g(X) becomes 1. In this way all the pure cycles are

* now interconnected, and the sequence is de Bruijn.

Q.E.D.

Theorem 6. For all odd n>3, there exist RC de Bruijn

sequences.

Proof. An RC de Bruijn sequence can always be composed

in the following way for n>3. First construct a light cycle

Vi h n-1
(LC) for those pure cycles of wt a<--- identical to the

method used in Lemma 6. Note that when the cycles of

n-i
wt --- are joined to cycles of smaller weight the truth

table is changed at positions whose weight is less than
n-1
-i For every X such that f (X) = 1 in LC, induce

n+1
f (r I) =1 on the pure cycles of wt (n-a) > - ,forming

a heavy cycle (HC). Note that HC is the reverse complement

of LC. All of the positions changed so that g (X) = 1 on
n~ 1

HC are of weights bigger than or equal to --- "

Join LC and HC by using a type RC number, y, which exist

by Lemma 4, since for n odd the truth table states have

even (n-i) length. The RC number y has weight . Letting

f (Y) = 1 then joins LC and HC forming one sequence. By

Theorem 1 the sequence is RC, and by Lemma 6 the sequence

is de Bruijn.

Q.E.D.
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C. LOWER BOUND ON NUMBER OF RC SEQUENCES

1. Theorem

A weak lower bound on the number of RC de Bruijn

sequences is established.

Theorem 7: A lower bound on number of de Bruijn

RC sequences for odd n>3 is A - , where A is the

number of possible different interconnections for pure

cycles of weight n-I as determined by the Best method

[Ref. 5].

Proof: Restricting attention to those cycles of

wt< nT (since the other connections are induced), the

Best method gives the number A of possible different inter-

n-i
connections f~rlthe pure cycles of weight<:S7- .n-ince

there exist 2 type RC numbers, this gives 2 ways

of joiniyg A different pairs of cycles for a total of

A • 2 possibilities.

Q.E.D.

2. Example for n = 7

The pure cycles of wt<3 and the adjacency matrix

of A are given in Tables 5.3 and 5.4 respectively. The

value of the determinant of the adjacency matrix is 38,880

for any diagonal element. This gives a lower bound of

38,880 X 8 = 311,040 for the number of de Bruijn RC sequences.
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TABLE 5.1

PURE CYCLES FOR N=7 wt < 3

.4- 0

1 2 4 8 16 32 64

3 6 1-2 24 48 96 65

5 10 20 40 80 33 66

7 14 28 56 112 97 67

A9 18 36 72 17 34 68

*11 22 44 88 49 98 69

13 26 52 104 81 35 70

*19 38 76 25 s0 100 73

21 42 84 41 82 37 74

No.
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TABLE 5.2

ADJACENCY MATRIX FOR n=7

1 -1 0 0 0 0 0 0 0 0

-1 7 -2 -2 -2 0 0 0 0 0

0. 0 -2 7 0 0 -2 -1 -1 -1 0

0 -2 0 7 0 -1 -1 -1 0 -2

. 0 -2 0 0 7 0 -1 -1 -2 -1

0 0 -2 -1 0 3 0 0 0 0

• 0 0 -1 -1 -1 0 3 0 0 0

.-. 0 0 -1 -1 -1 0 0 3 0 0
.-

0 0 -1 0 -2 0 0 0 3 0

0 0 0 -2 -1 0 0 0 0 3
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VI. CONJECTURES

Although a complete proof for a (c, n) 0 (mod 4)

has yet to be given, a technique for grouping RC sequences

in a 0 (mod 4) fashion will be demonstrated for n = 5.

However, the technique fails to preserve complexity in

every case. However, for n = 5 the complexitites produced

were congruent to 0 (mod 2) and when the complement of

each sequence is added a 0 (mod 4) distribution results.

It remains, however, that the complexity of the generated

sequences are not determined apriori. The technique pre-

sented is interesting in its own right, and it is hoped

that the interested reader may be able to apply it towards

a solution of the 0 (mod 4) distribution.

A. RC SEQUENCE GENERATOR TECHNIQUE

Table 6.1 shows a listing of four RC sequences and their

generators. The technique used was to choose in turn each

of the type RC numbers to have a functional value of 1.

Note that the complexity of S3 and S5 are both 23,

while the complexity of SI0 and S1 2 are both 29. At present

thcre is no way of knowing which pair of RC sequences will

have the same complexity, except that it appears C(Sk)=C(SrF)

iffall four RC sequences have the same complexity. A listing

of the generators for each of the 32 pairs of RC sequences
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TABLE 6.1

RC GENERATOR TECHNIQUE

C(S 3 )=23 C(Ss)=23 C(S 1 o)=29 C(S11 )=29

n G(S3 ) G(S5 ) G(S1 o) G(S1 2)

0 1 1 1 1

1 1 1 1 1

2 0 0 0 0

M1 0 00

4 1 1 1 1

0 1 0 0

6 1 1 1 1

7 1 1 1 1

8 1 1 1 1

9 1 1 1 1

100 0 -1 0

11 0 0 0 0

-.. J 0 0 0 1

13 1 1 1 1

14 1 1 1 1

15 1 1 1 1

_-_ indicates RC number.

S3 11111001010001001101110101100000

S5 = 11111001011000001101110101000100

.I~tl SI- 11111001010110000011011101000100

S 11111000001101110101100101000100
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is prepared in Table 6.2. These are listed in order by

W(G) and then by complexity as far as the groupings allow.
.4-.,

Keep in mind, that the complement of each RC sequence is not

included in the table. A close analysis of this table then

shows a 0 (mod 4) grouping for the number of RC sequences

of complexity c and span n = 5.

B. PROBLEMS

For n = 7, there exist 6 type R numbers (other than 0

! & 64) and 8 type RC numbers in the truth table. This large

number of possibilities will create considerable problems

in extending this idea to n = 7 and beyond.

Using this approach a large scale computer based analysis

is essential to any further investigation of RC sequences

for n>7. Considering the number of de Bruijn sequences for

n = 7 to be 2 or 1.42 x 1017 an algorithm for generating

only the RC sequences is crucial, since generating 1017

de Bruijn sequences is not technically feasible. Though

Theorem 7 establishes the lower bound of 311,040 RC sequences

for n = 7, this is a very weak bound and a presumably still

conservative estimate would be on the order of 106 actual

RC sequences for n = 7.
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TABLE 6.2

RC de BRUIJN SEQUENCE 0 (Mod 4)
GROUPING FOR n5S

G (S) W[G(S)] C(S)
100 0 1 1 1001 0 0 1 101 7 2S

0 1 -7 25
S37 27

1 3 7 27
100 u 0 0 1011 1 0 0 011 7 27

1 7 27
1 29
3 1 7 29

101 0 0 0 0010 0 011 7 31
1 7 31

1 7 31
1 -7 31

100 3 1 0 0010 0 0 1 111 7 31
1 3 7 31

1 " 7 31

101 0 0 0 101110Ol 9 31
1 1 9 31

1 9 31
- ' 1 9 31

100 0 1 U 1011 1 0 0 111 9 31
" 1 9 31

1 9 31
1 1 9 31

i 0o0 1111 i 1 i0011 11 23
1 "3 1 1 23

11 29
" 1 11 29

101 0 1 1 1011 0 1 0 i1 11 25
D71 11 25

1 11 27
U 1 11 27

IWO
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APPENDIX A

ALGORITHM FOR GENERATING LEAST ELEMENT
FOR EVERY PURE CYCLE

This algorithm is designed to produce the least element

of each pure cycle. The least elements are initially in

decreasing order. A simple rearrangement will group the

least elements by weight in decreasing order if necessary.

The algorithm to be presented is an adaptation of the

0-operation discussed in a paper by Fredricksen and Maiorana

[Ref. 10], to generate a lexicographic list of necklaces.

ALGORITHM: Begin the Q operation with the zero n-tuple,

which is the first least element for the zero pure cycle.

-- Operation: Q (x .. Xn) = (Y : = Y

1. Find the largest subscript j such that

x j =0 and xk 1 for k>j.

. 2. Form x1 x2 .. - 1 where x= 1

3. Repeat xI x2 -I* Xj 1 l until n numbers are produced.

i) If n = tj for some integer t then let

Y=x " •.-x _ lx ... x 1 ... ••x x 1i

ii) If n>tj then finish with Xl-.Xnt ,J
m , 1 - nj-int

then let Y=x I* x j- 1 .. 1.. x 1lx1 *Xn-t

4. Y is a least element iff n=tj

5. Repeat beginning at step 1 until the final least

element (1)n is reached.
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TABLE A.1

ALGORITHM FOR N = 7

wt
0000000 0
0000001 1
0000010 *
0000011
0000100 *
0000101 2
0000110 *

0000111 3
0001000 *
0001001 2
0001010 *
0001011 3
0001100 *
0001101 3
0001110*
0001111 4
0010010 *

0010011 3
0010100 *
0010101 3
0010110
0010111 4
0011001 *
0011010 *
nolioi1 4
0011100 *
0011101 4
0011110 *
0011111 5
0101010 *

0101011 4
0101101 *
0101110 *
0101111 5
0110110 *
0110111 5

e. 011110 *
0111011 *

0111111 6
1111111 7

• Unacceptable
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Table A.l illustrates the algorithm for n=7. Arranging

in order by weight, the least element for each pure cycle is

tabulated in Table A.2.

TABLE A.2

PURE CYCLE LEAST ELEMENTS (n=7)

0 0000000 0
%" ~.1 0000001 1

2 0000011 3
0000101 5
0001001 9

3 0000111 7
0001011 11
0001101 13
0010011 19
0010101 21

4 0001111 is
0010111 23
0011011 27
0011101 29
0101011 43

5 0011111 31
0101111 47
0110111 55

6 0111111 63
7 1111111 127

I-°
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